Сложные органические соединения липидной природы стероидная группа. Незаменимые жирные кислоты. Транс -ненасичени жирные кислоты

Сложные органические соединения липидной природы стероидная группа. Незаменимые жирные кислоты. Транс
 -ненасичени жирные кислоты
Сложные органические соединения липидной природы стероидная группа. Незаменимые жирные кислоты. Транс -ненасичени жирные кислоты

Спасибо

Что за вещества липиды?

Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.

В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.

Какая разница между липидами и жирами?

В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.

Липиды в организме человека

Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.

С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:

  • выработка организмом энергии;
  • деление клеток;
  • передача нервных импульсов;
  • образование компонентов крови, гормонов и других важных веществ;
  • защита и фиксация некоторых внутренних органов;
  • клеточное деление, дыхание и др.
Таким образом, липиды являются жизненно важными химическими соединениями. Значительная часть этих веществ поступает в организм с пищей. После этого структурные компоненты липидов усваиваются организмом, и клетки вырабатывают новые молекулы липидов.

Биологическая роль липидов в живой клетке

Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.

В живом организме липиды выполняют следующие функции:

  • энергетическая;
  • резервная;
  • структурная;
  • транспортная;
  • ферментативная;
  • запасающая;
  • сигнальная;
  • регуляторная.

Энергетическая функция

Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.

Резервная (запасающая ) функция

Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.

Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.

Структурная и барьерная функции (мембранные липиды )

Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.

Почему липиды-мономеры образуют двойной слой (бислой )?

Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.

Транспортная функция

Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.

Ферментативная функция

В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.

Сигнальная функция

Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.

Регуляторная функция

Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).

Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.

Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )

Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.

Также липиды в той или иной степени связаны с обменом следующих веществ:

  • Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
  • Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
  • Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
  • Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Таким образом, обмен липидов в организме в любом случае нужно рассматривать в комплексе, с точки зрения взаимосвязи с другими веществами.

Переваривание и всасывание липидов (обмен веществ, метаболизм )

Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.

Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.

Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.

Что такое эмульгирование липидов?

Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.

Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:

  • На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
  • Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
  • При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
  • В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
У некоторых людей после удаления желчного пузыря могут возникнуть проблемы с усвоением жиров. Желчь поступает в двенадцатиперстную кишку непрерывно, непосредственно из печени, и ее не хватает для эмульгирования всего объема липидов, если их съедено слишком много.

Ферменты для расщепления липидов

Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.

За расщепление липидов отвечают следующие группы ферментов:

  • липазы;
  • фосфолипазы;
  • холестеролэстераза и др.

Какие витамины и гормоны участвуют в регуляции уровня липидов?

Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.

Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:

  • Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
  • Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
  • Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
  • Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
  • Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Таким образом, поддержание нормального уровня липидов в крови – весьма сложный процесс, на который прямо или косвенно влияют разные гормоны, витамины и другие вещества. В процессе диагностики врачу необходимо определить, на каком именно этапе этот процесс был нарушен.

Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )

Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.

Биосинтез липидов происходит в следующих тканях и клетках:

  • Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
  • Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
  • Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Совокупность вышеописанных процессов и составляет метаболизм липидов в человеческом организме.

Ресинтез липидов в печени и других органах

Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.

На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».

Входят ли липиды в состав мозга?

Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.

В состав миелиновой оболочки в нервной системе входят следующие липиды:

  • фосфолипиды;
  • холестерин;
  • галактолипиды;
  • гликолипиды.
При некоторых врожденных нарушениях образования липидов возможны неврологические проблемы. Это объясняется именно истончением или прерыванием миелиновой оболочки.

Липидные гормоны

Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.

Липиды входят в состав следующих жизненно важных гормонов:

  • кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
  • мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
  • женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Таким образом, недостаток некоторых жирных кислот в пище может серьезно отразиться на работе эндокринной системы.

Роль липидов для кожи и волос

Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.

Для волос и кожи липиды важны по следующим причинам:

  • значительная часть вещества волоса состоит из сложных липидов;
  • клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
  • секрет (выделяемое вещество ) сальных желез увлажняет кожу;
  • благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
  • небольшое количество липидов на поверхности волос придают им здоровый блеск;
  • липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
В клетки кожи, как и в волосяные луковицы, липиды поступают с кровью. Таким образом, нормальное питание обеспечивает здоровье кожи и волос. Использование шампуней и кремов, содержащих липиды (особенно незаменимые жирные кислоты ) также важно, потому что часть этих веществ будет впитываться с поверхности клеток.

Классификация липидов

В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.

В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.

Экзогенные и эндогенные липиды

Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.

После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.

Жирные кислоты

Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.

В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.

Наиболее важными источниками жирных кислот для человека являются:

  • животные жиры;
  • растительные жиры;
  • тропические масла (цитрусовое,

Липиды - жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам. В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры . Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами .

Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H + и OH - в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:

  • пальмитиновая СН 3 - (СН 2) 14 - СООН или С 15 Н 31 СООН;
  • стеариновая СН 3 - (СН 2) 16 - СООН или С 17 Н 35 СООН;
  • арахиновая СН 3 - (СН 2) 18 - СООН или С 19 Н 39 СООН;

среди непредельных:

  • олеиновая СН 3 - (СН 2) 7 - СН = СН - (СН 2) 7 - СООН или С 17 Н 33 СООН;
  • линолевая СН 3 - (СН 2) 4 - СН = СН - СН 2 - СН - (СН 2) 7 - СООН или С 17 Н 31 СООН;
  • линоленовая СН 3 - СН 2 - СН = СН - СН 2 - СН = СН - СН 2 - СН = СН - (СН 2) 7 - СООН или С 17 Н 29 СООН.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.

Жиры, содержащие короткие и ненасыщенные углеродные цепи в остатках жирных кислот, имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества. И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре представляют собой твердые вещества. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, превращается в однородное мазеобразное арахисовое масло, а подсолнечное масло - в маргарин. В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицеролов, чем у обитателей южных широт. По этой причине тело их остается гибким и при низких температурах.

Различают:

Фосфолипиды - амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде).

Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Воска - сложные эфиры одноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.

Еще одну группу липидов составляют стероиды . Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.

К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.

К стероидам близки терпены (ростовые вещества растений - гиббереллины; фитол, входящий в состав хлорофилла каротиноиды - фотосинтетичские пигменты; эфирные масла растений - ментол, камфора и др.).

Липиды могут образовывать комплексы с другими биологическими молекулами.

Липопротеины - сложные образования, содержащие триацилглицеролы, холестерол и белки, причем последние не имеют ковалентных связей с липидами.

Гликолипиды - это группа липидов, построенных на основе спирта сфингозина и содержащих кроме остатка высших карбоновых кислот одну или несколько молекул сахаров (чаще всего глюкозу или галактозу).

Функции липидов

Структурная . Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.

Энергетическая . При окислении 1 г жиров высвобождается 38,9 кДж энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию. Семена многих растений (кокосовая пальма, клещевина, подсолнечник, соя, рапс и др.) служат сырьем для получения масла промышленным способом.

Защитная и теплоизоляционная . Накапливаясь в подкожной жировой клетчатке и вокруг некоторых органов (почки, кишечник), жировой слой защищает организм от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль - способствует плавучести.

Смазывающая и водоотталкивающая . Воска покрывают кожу, шерсть, перья, делают их более эластичными и предохраняют от влаги. Восковым налетом покрыты листья и плоды растений; воск используется пчелами в строительстве сот.

Регуляторная . Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон).

Метаболическая . Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются источником метаболической воды. При окислении жира образуется примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно на эти цели. Необходимую для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления жира.

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.

Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.

Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.

Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.

Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

Липиды (Жиры).

Липидами - называют сложную смесь органических соединений (соединения с углеродом С), с близкими физико-химическими свойствами:

- не растворимость в воде.
- хорошая растворимость в органических растворителях (бензин, хлороформ)

Липиды широко распространены в природе. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. Липиды - важнейший компонент пищи, во многом определяет ее пищевую ценность и вкусовое достоинство.
В растениях они накапливаются главным образом в семенах и плодах. У животных и рыб липиды концентрируются в подкожных жировых тканях, в брюшной полости и тканях, окружающих многие важные органы (сердце, почки), а также в мозговой и нервной тканях. Особенно много липидов в подкожной жировой ткани китов (25-30 % от их массы), тюлений и других морских животных. У человека содержание липидов колеблется от 10-20% в среднем.

Виды липидов.

Классификаций жиров существует много видов, мы разберем наиболее простую, она разделяет их на три большие группы:

- Простые липиды
- Сложные липиды
- Производные липидов.

Разберем каждую группу липидов в отдельности, что в них входит, и для чего они нужны.

Простые Липиды.

1) Нейтральные жиры (или просто жиры).

Нейтральные жиры состоят из триглицеридов.

Триглицерид - липид или нейтральный жир, в состав которого входит глицерин, соединенный с тремя молекулами жирных кислот.

Глицерин - химическое соединение с формулой C3H5(OH)3, (бесцветная, вязкая, сладковатая жидкость без запаха.)

Жирные кислоты природные или созданные соединения с одной или несколькими группами – COOH (карбоксильные) не создающие циклических связей (ароматических), с числом атома углерода (С) в цепи не менее 6.

Триглицериды производятся из продуктов расщепления пищевых жиров и являются формой сохранения жиров в организме человека. Основная часть пищевых жиров (98%) являются триглицеридами. Жир так же сохраняется в организме в виде триглицеридов.

Виды жирных кислот:

- Насыщенные жирные кислоты - содержат только одинарные связи между атомами углерода со всеми остальными связями, прикрепленными к атомам водорода. Молекула соединяется с максимально возможным количеством атомов водорода, поэтому данная кислота называется насыщенной., они отличаются от ненасыщенных тем, что остаются твердыми при комнатной температуре.

Продукты в которых содержится больше всего насыщенных жиров, это свиное сало и жир, куриный, говяжий и бараний жир, сливочное масло и маргарин. Из продуктов, богатых такими жирами, можно назвать колбасу, сардельки и другие колбасные изделия, бекон, обычную нежирную говядину; сорта мяса, называемые «мраморными»; куриную кожу, бекон; мороженое, кремы, сыры; большую часть мучных и других кондитерских изделий.

- ненасыщенные жирные кислоты - содержат одну или больше двойных связей вдоль главной углеродной цепи. Каждая двойная связь уменьшает число атомов водорода, которые могут связываться с жирной кислотой. Двойные связи также приводят к «изгибу» в жирных кислотах, что предотвращает связь между ними.

Ненасыщенные жирные кислоты содержатся в растительных источниках.

Их можно разделить на два вида:
1) мононенасыщенные – ненасыщенные жирные кислоты с одной двойной связью. (например -оливковое масло)
2) полиненасыщенные – ненасыщенные жирные кислоты с двумя или более двойными связями. (например - льняное масло)

О пищевых жирах будет отдельная большая тема, разбирающая подробно все их свойства.

2) Воски.

Воски – жироподобные вещества, животного или растительного происхождения, состоящие из сложных эфиров одноатомных спиртов и жирных кислот.

Сложные эфиры соединения – СООН (карбоксильные) , у которых атом водорода в НО-группе замещен органической группой.

Спирты соединения –ОН, связанные с атомом углерода.

Простыми словами, воски это – бесформенные, пластичные, легко размягчающиеся при нагревании вещества, плавящиеся в интервале температур от 40 до 90 градусов цельсия.

Пчелиный воск выделяется специальными железами медоносных пчёл, из него пчёлы строят соты.

Сложные липиды.

Сложный липид - это соединение триглицерида с другими химическими веществами.
Всего их выделяют три вида.

Фосфолипиды – глицерин соединенный с одной или двумя жирными кислотами а так же фосфорная кислота.

Из фосфолипидов состоит клеточная мембрана. В продуктах питания наиболее популярен – лецитин.

Гликолипиды – соединения жировых и углеводоводных компонентов. (Содержатся во всех тканях, главным образом в наружном липидном слое плазматических мембран.)

Липопротеиды – комплексы жиров и белков. (Плазма крови)

Производные липидов.

Холестерин - жироподобное вещество, похожее на воск, присутствующее в каждой клетке тела и во многих продуктах питания. Некоторое количество холестерина в крови необходимо, но высокий его уровень может привести к болезни сердца.

Много холестерина содержится в яйцах, жирных сортах мяса, колбасы, жирных молочных продуктах.

С общей классификацией разобрались, какие же функции выполняют липиды?

Функции.

- Структурная функция.

Фосфолипиды принимают участие в построении мембран клеток всех органов и тканей. Они участвуют в образовании многих биологически важных соединений.

- Энергетическая функция.

При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.. При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

- Защитная и теплоизоляционная

Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.
Смазывающая и водоотталкивающая.
Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

- Регуляторная.

Многие гормоны являются производными холестерина, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды. Производные холестерина, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения. В миелиновых (непроводимых заряд) оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

- Источник метаболической воды.

Окисление 100 г жира дает примерно 105-107г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

— это группа органических веществ, входящих в состав живых организмов и характеризуются нерастворимостью в воде и растворимости в неполярных растворителях, таких как диетилетер, хлороформ и бензол. Это определение объединяет большое количество соединений различных по химической природе, в частности таких как жирные кислоты, воски, фосфолипиды, стероиды и многие другие. Также разнообразны и функции липидов в живых организмах: жиры являются формой запасания энергии, фосфолипиды и стероиды входят в состав биологических мембран, другие липиды, содержащиеся в клетках в меньших количествах могут быть коферментами, светопоглощающего пигментами, переносчиками электронов, гормонами, вторичными посредниками время внутриклеточной передачи сигнала, гидрофобными «якорями», которые содержат белки у мембран, шаперонами, способствующих Фолдинг белков, эмульгаторами в желудочно-кишечном тракте.

Люди и другие животные имеют специальные биохимические пути для биосинтеза и расщепления липидов, однако некоторые из этих веществ являются незаменимыми и должны поступать в организм с пищей, например ω-3 и ω-6 ненасыщенные жирные кислоты.

Классификация липидов

Традиционно липиды делятся на простые (эфиры жирных кислот со спиртами) и сложные (которые кроме остатка жирной кислоты и спирта содержат еще дополнительные группы: углеводороды, фосфатные и другие). К первой группе относятся в частности ацилглицеролы и воски, ко второй — фосфолипиды, гликолипиды, также сюда можно отнести липопротеины. Эта классификация не охватывает все разнообразие липидов, поэтому часть из них выделят в отдельную группу предшественников и производных липидов (например жирные кислоты, стеролы, некоторые альдегиды и т.д.).

Современная номенклатура и классификация липидов, используется в исследованиях в области липидомикы, основывается на разделении их на восемь основных групп, каждая из которых сокращенно обозначается двумя английскими буквами:

  • Жирные кислоты (FA)
  • Глицеролипидов (GL)
  • Глицерофосфолипиды (GP)
  • Сфинголипиды (SP);
  • Стероидные липиды (ST);
  • Пренольни липиды (PR)
  • Сахаролипиды (SL)
  • Поликетиды (PK).

Каждая из групп делится на отдельные подгруппы, обозначаемые комбинацией из двух цифр.

Возможна также классификация липидов на основе их биологических функций, в таком случае можно выделить такие группы как: запасные, структурные, сигнальные липиды, кофакторы, пигменты и тому подобное.

Характеристика основных классов липидов

Жирные кислоты

Жирные кислоты — это карбоновые кислоты, молекулы которых содержат от четырех до тридцати шести атомов углерода. В составе живых организмов было обнаружено более двухсот соединений этого класса, однако широкое распространение получили около двадцати. Молекулы всех природных жирных кислот содержат четное количество атомов углерода (это связано с особенностями биосинтеза, который происходит путем добавления двокарбонових единиц), преимущественно от 12 до 24. Их углеводородные цепочки обычно неразветвленные, изредка они могут содержать трикарбонови циклы, гидроксильные группы или ответвления.

В зависимости от наличия двойных связей между атомами углерода все жирные кислоты делятся на насыщенные, которые их содержат, и ненасичнени, в состав которых входят двойные связи. Наиболее распространенными из насыщенных жирных кислот в организме человека является пальмитиновая (C 16) и стеариновая (C 18).

Ненасыщенные жирные кислоты встречаются в живых организмах чаще насыщенные (около 3/4 общего содержания). В большинстве из них наблюдается определенная закономерность в размещении двойных связей: если такая связь один, то он преимущественно находится между 9-ым и 10-ым атомами углерода, дополнительные двойные связи в основном появляются в позициях между 12- тем и 13-м и между 15-ым и 16-ым карбоном (исключением из этого правила является арахидоновая кислота). Двойные связи в природных полиненасыщенных жирных кислотах всегда изолированы, то есть между ними содержится хотя бы одна метиленовая группа (-CH = CH-CH 2 -CH = CH-). Почти во всех ненасыщенных жирных кислот, встречающихся в живых организмах, двойные связи находятся в цис конфигурации. К наиболее распространенным ненасыщенных жирных кислот относятся олеиновая, линолевая, линоленовая и арахидоновая.

Наличие цис -Двойной связей влияет на форму молекулы жирных кислот (делает ее менее компактной), а соответственно и на физические свойства этих веществ: ненасыщенные жирные кислоты в цис -форме имеют низкую температуру плавления чем соответствующие транс изомера и насыщенные жирные кислоты.

Жирные кислоты встречаются в живых организмах преимущественно как остатки в составе других липидов. Однако в небольших количествах они могут быть обнаружены и в свободной форме. Производные жирных кислот эйкозаноиды играют важную роль как сигнальные соединения.

Ацилглицериды

Ацилглицериды (ацилглицеролы, глицериды) — это эфиры трехатомных спирта глицерина и жирных кислот. В зависимости от количества эстерифицированные гидроксильных групп в молекуле глицерина они делятся на триглицериды (триацилглицеролов), диглицериды (диацилглицеролы) и моноглицериды (моноацилглицеролы). Наиболее распространенные триглицериды, которые еще имеют эмпирическую название нейтральные жиры или просто жиры.

Жиры могут быть простыми, то есть содержать три одинаковые остатки жирных кислот, например тристеарин или триолеин, но чаще встречаются смешанные жиры, содержащие остатки различных жирных кислот, например 1-пальмито-2-олеолинолен. Физические свойства триглицеридов зависят от жирнокислотного состава: чем больше они содержат остатков длинных ненасыщенных жирных кислот, тем больше в них температура плавления, и наоборот — чем больше коротких ненасыщенных, тем она меньше. В общем растительные жиры (масла) содержат около 95% ненасыщенных жирных кислот, и поэтому при комнатной температуре находятся в жидком агрегатном состоянии. Животные жиры, наоборот содержат в основном насыщенные жирные кислоты (например коровье масло состоит в основном из тристеарин), поэтому при комнатной температуре твердые.

Основной функцией ацилглицеридив является то, что они служат для запасания энергии, и является наиболее энергоемких топливом клетки.

Воски

Воски — это эфиры жирных кислот и высших одноатомных или двухатомных спиртов, с числом атомов углерода от 16 до 30. Часто в составе восков встречается цетиловый (C 16 H 33 OH) и мирициловий (C 30 H 61 OH) спирты. К природным восков животного происхождения принадлежит пчелиный воск, спермацет, ланолин, все они кроме эфиров содержат еще некоторое количество свободных жирных кислот и спиртов, а также углеводородов с числом атомов углерода 21-35.

Хотя некоторые виды, например определенные планктонные микроорганизмы, используют воски как форму запасания энергии, обычно они выполняют другие функции, в частности обеспечения водонепроницаемости покровов как животных так и растений.

Стероиды

Стероиды — это группа природных липидов, содержащих в своем составе циклопентанпергидрофенантренове ядро. В частности к этому классу соединений относятся спирты с гидроксильной группой в третьем положении — стеролы (стерины) и их эфиры с жирными кислотами — стеридов. Самым распространенным Стеролы у животных есть холестерол, что в неэстерифицированных составе входит в состав клеточных мембран.

Стероиды выполняют множество важных функций у разных организмов: часть из них являются гормонами (например, половые гормоны, и гормоны коры надпочечников у человека), витаминами (витамин D), эмульгаторами (желчные кислоты) и др.

Фосфолипиды

Основной группой структурных липидов фосфолипиды, которые в зависимости от спирта, входящего в их состав делятся на глицерофосфолипиды и сфингофосфолипиды. Общим признаком фосфолипидов является их амфифильность: они гидрофильную и гидрофобную части. Такое строение позволяет им образовывать в водной среде мицеллы и бислои, последние составляют основу биологических мембран.

Глицерофосфолипиды

Глицерофосфолипиды (фосфоглицеридов) — это производные фосфатидной кислоты, состоящий из глицерина, в котором первые две гидроксильные группы эстерифицированные жирными кислотами (R 1 и R 2), а третья — фосфатной кислотой. К фосфатной группы в третьем положении присоединяется радикал (Х), обычно азотсодержащий. В природных фосфоглицеридов, в первом положении чаще всего расположен остаток насыщенной жирной кислоты, а во втором — ненасыщенной.

Остатки жирных кислот неполярные, поэтому они образуют гидрофобную часть молекулы глицерофосфолипидов, так называемые гидрофобные хвостики. Фосфатная группа в нейтральной среде несет отрицательный заряд, в то время, как азотсодержащие соединения — положительный (некоторые фосфоглицеридов могут содержать также и отрицательно заряженный или нейтральный радикал), так эта часть молекулы полярная, она образует гидрофильную голову. В водном растворе фосфоглицеридов образуют мицеллы, в которых головы повернуты наружу (водной фазы), а гирофобни хвостики — внутрь.

Наиболее распространенными фосфоглицеридов, входящих в состав мембран животных и высших растений, является фосфатидилхолин (лецитин), в которых радикал Х — это остаток холина, и фосфатидилэтаноламин, содержащих остаток этаноламина. Реже встречаются фосфатидилсерин, в которых к фосфатной группы присоединена аминокислота серин.

Существуют также безазотистые глицерофосфолипиды: например фосфатидидинозитолы (радикал Х — циклический шестиатомный спирт инозитол), участвующих в клеточном сигналюванни, и кардиолипиновые — двойные фосфоглицеридов (две молекулы фосфатидной кислоты соединены фосфатом), найденные во внутренней мембране митохондрий.

К глицерофосфолипидов относятся также плазмалогены, характерным признаком строения этих веществ является то, что в них ацильный остаток у первого атома углерода присоединен НЕ Эстерн, а эфирного связью. У позвоночных животных плазмалогенамы, которые еще называют эфирного липидами, обогащенная ткань сердечной мышцы. Также к этому классу соединений принадлежит биологически активное вещество фактор активации тромбоцитов.

Сфингофосфолипиды

Сфингофосфолипиды (сфингомиелины) состоят из церамида, содержащий один остаток длинноцепочечных аминоспирта сфингозина и один остаток жирной кислоты, и гирофильного радикала, присоединенного к сфингозина фосфодиестерним связью. В качестве гирофильного радикала чаще всего выступает холин или этаноламин. Сфингомиелины встречаются в мембранах различных клеток, но богатый на них нервная ткань, особенно высокое содержание этих веществ в миелиновой оболочке аксонов, откуда и происходит их название.

Гликолипиды

Гликолипиды — это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

Глицерогликолипиды

Глицерогликолипиды (гликозилглицеролы) — это производные диацилглицеролив, в которых, к третьему атома углерода глицерина присоединен гликозильним связью моно- или олигосахарид. Наиболее распространенными из этого класса соединений является галактолипидов, содержащих один или два остатка галактозы. Они составляют от 70% до 80% всех липидов мембран тилакоидов, из-за чего наиболее распространенными мембранными липидами биосферы. Предполагается, что растения «заменили» фосфолипиды гликолипидами за того, что содержание фосфатов в почве часто является лимитирующим фактором, а такая замена позволяет сократить потребность в нем.

На ряду с галактолипидов в растительных мембранах встречаются также сульфолипиды, содержащих остаток сульфатированных глюкозы.

Сфингогликолипиды

Сфингогликолипиды — содержат церамид, а также один или несколько остатков сахаров. Этот класс соединений разделяют на несколько подклассов в зависимости от строения углеводного радикала:

  • Цереброзиды — это сфингогликолипиды, гидрофильная часть которых представлена ​​остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.
  • Глобозиды — олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.
  • Ганглиозиды — сложные с гликолипидов, их гидрофильная часть представлена ​​олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовой (сиаловой) кислоты, поэтому они имеют кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарной нейронов.

Основные функции

Подавляющее большинство липидов в живых организмах принадлежат к одной из двух групп: запасные, выполняющих функцию запасания энергии (преимущественно триацилглицеролов), и структурные, которые участвуют в построении клеточных мембран (преимущественно фосфолипиды и гилколипиды, а также холестерол). Однако функции липидов не ограничиваются только этими двумя, они также могут быть гормонами или другими сигнальными молекулами, пигментами, эмульгаторами, водоотталкивающими веществами покровов, обеспечивать термоизоляцию, изменение плавучести и тому подобное.

Запасные липиды

Почти все живые организмы запасают энергию в форме жиров. Существуют две главные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же, как в углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более вдвое больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры гидрофобные соединения, поэтому организм, запасает энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г приходится 2 г воды. Однако триглицериды это «медленнее» источник энергии чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеющиеся специализированные клетки — адипоциты, почти целиком заполнены большим каплей жира. Также богатым ТГ являются семена многих растений. Мобилизация жиров в адипоцитах и ​​клетках семян, прорастает, происходит благодаря ферментам липазы, которые розщепелюють их к глицерина и жирных кислот.

У людей наибольшее количество жировой ткани расположена под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Лицу с легким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения энергией в течение месяца, в то время как всего запасного гликогена хватит менее чем на сутки.

Жировая ткань, на ряду с энергетическим обеспечением, выполняет также и другие функции: защита внутренних органов от механических повреждений; термоизоляция, особенно важна для теплокровных животных, живущих в очень холодных условиях, таких как тюлени, пингвины, моржи; жиры также могут быть источником метаболической воды, именно с такой целью используют свои запасы триглицеридов жители пустынь: верблюды, кенгуру крысы (Dipodomys).

Структурные липиды

Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой). В 1 мкм 2 биологической мембраны содержится около миллиона молекул липидов. Все липиды, входящие в состав мембран, имеют амфифильные свойства: они составляют с гирофильнои и гирофобнои частей. В водной среде такие молекулы спонтанно образуют мицеллы и бислои результате гидрофобных взаимодействий, в таких структурах полярные головы молекул возвращены наружу водной фазы, а неполярные хвосты — внутрь, такое же размещение липидов характерно для природных мембран. Наличие гидрофобного слоя очень важна для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений.

Липидный бислой биологических мембран — это двумерная жидкость, то есть отдельные молекулы могут свободно передвигаться относительно друг друга. Текучесть мембран зависит от их химического состава: например, с увеличением содержания липидов, в состав которых входят полиненасыщенные жирные кислоты она увеличивается.

Основными структурными липидами, входящих в состав мембран животных клеток, является глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащенные другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидив, в частности сфингомиелину, а также сфингогликолипидив. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид — эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Уникальным липидным составом характеризуются мембраны архей: они состоят из так называемых глицерин диалкил гилцерол тетраетерив (ГДГТ). Эти соединения построены из двух длинных (около 32 атомов углерода) разветвленных углеводородов, присоединенных на обоих концах к остаткам глицерина эфирного связью. Использование эфирного связи вместо Эстерн, характерного для фосфо- и гликолипидов, объясняется тем, что он более устойчив к гидролизу в условиях низких значений pH и высокой температуры, что характерно для среды, в которой обычно проживают археи. На каждом из концов ГДГТ до глицерина присоединен по одной гидрофильной группе. ГДГТ в среднем вдвое длиннее мембранные липиды бактерий и эукариот и могут пронизывать мембрану насквозь.

Регуляторные липиды

Некоторые из липидов играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, в липидов относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов также и вторичные посредники — вещества, которые принимают участие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5 бифосфат (ФИ (4,5) Ф2) задействован в сигналюванни с участием G-белков, фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определенных внеклеточных факторов, сфинголипиды, такие как сфингомиелин и цермаид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты — эйкозаноиды — является примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкотриены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимые для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свертывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях.

Другие функции

Часть витаминов, то есть веществ, необходимых для жизнедеятельности организма в небольших количествах, относятся к липидов. Их объединяют под названием жирорастворимые витамины и разделяют на четыре группы: витамин A, D, E и K. По химической природе все эти вещества являются изопреноидов. К изопреноидов также относятся и переносчики электронов убихинон и пластохинона, что является частью электронтранспортных цепей митохондрий и пластид соответственно.

Большинство изопреноидов содержащих конъюгированные двойные связи, из-за чего в их молекулах возможна делокализация электронов. Такие соединения легко возбуждаются светом, в результате чего они имеют цвет видимый человеческому глазу. Многие организмы используют изопреноиды как пигменты для поглощения света (например каротиноиды входящих в светособирающих комплексов хлоропластов), а также и для общения с особями своего или других видов (наприкалд изопреноидов зеаксантин предоставляет перьям некоторых птиц желтого цвета).

Липиды в диете человека

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимые для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека вследствие употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерина в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85% процентов холестерина в крови синтезируется печенью.

Организация American Heart Association рекомендует употреблять липиды в количестве не более 30% от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10% от всех жиров и не употреблять более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерина и триглицеридов в крови до 20 мг / л.

Жиры занимают высокую энергетическую ценность и играют важную роль в биосинтезе липидных структур, прежде всего мембран клеток. Жиры пищевых продуктов представлены триглицеридами и липоидного веществами. Жиры животного происхождения состоят из насыщенных жирных кислот с высокой температурой плавления. Растительные жиры содержат значительное количество полиненасыщенных жирных кислот (ПНЖК).

Животные жиры содержат свиное сало (90-92% жира), сливочное масло (72-82%), свинина (до 49%), колбасы (20-40% для разных сортов), сметана (20-30%), сыры (15-30%). Источниками растительных жиров является масла (99,9% жира), орехи (53-65%), овсяная крупа (6,1%), гречневая крупа (3,3%).

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3 (линоленовая) и ω-6 (линолевая) полиненасични жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3 кислот: ейозапентаеноевои (EPA) и докозагексаеноевои (DHA). Эти вещества необходимы для работы головного мозга, и положительно влияют на конгитивни и поведенческие функции.

Важно также соотношение ω-6 ω-3 жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1: 1 до 4: 1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата линоленовой и другие ω-из кислоты, источником которых являются зеленые растения (напирклад листья салата) рыба, чеснок, цели злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую ω-с жирные кислоты рекомендуется употреблять рыбий жир.

Транс -ненасичени жирные кислоты

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис -конфигурации. Если пища, богатая такие жиры, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации. Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей с цис — в транс -конфигурации. Употребление так называемых «транс жиров» влечет повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерин) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности. Более того «транс жиры» способствуют воспалительным процессам.

Негативный эффект «транс жиров» проявляется при употреблении 2-7 г в сутки, такое их количество может миситись в одной порции картофеля фри жареной на частично гидрогенизированные масла. Некоторыми законодательствами запрещено использование такого масла, например в Дании, штате Филадельфия и Нью-Йорк.